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1 Introduction

This document is an introduction to computing with Markov chain Monte Carlo using YADAS and its in-
terface YATRAN. It is likely that neither of these two ways of accessing YADAS functionality is as straight-
forward as you hope: YADAS itself requires you to write or modify Java code with characteristics unique
to YADAS, while YATRAN will look much friendlier but is early in development and therefore supports
only a small subset of YADAS. Still, we very much hope that you will persevere and become a YADAS user
and we are willing to help you do so. This document works through the first example on the YADAS web
site basically line-by-line; future installments of this tutorial are likely to contain reliability examples or be
tailored to other interests of yours.

For more information, one can go to the YADAS website yadas.lanl.gov, which contains eight more ex-
amples, and especially to the downloads page http://www.stat.lanl.gov/yadas/node1.html#download,
and also to Todd’s papers web page http://www.ccs.lanl.gov/ccs6/staff/TGraves/pdfs.html. An-
other source of information is on bubs, in projects/yodas/tutorial08. Of course, you can also go to
Todd, Richard, or Mike for help.

2 Setting Up YADAS and running an example

The first step in installing YADAS on your system is to acquire a copy of the file yadas.jar and saving it
somewhere. (It can be saved under a different name if you choose.) A .jar file is a “Java archive”, which
contains compiled versions (classes) of Java code that you can use. Next, you need to tell your system that
one of the places it should look for Java class files is in this .jar file. This is done by setting an environment
variable called CLASSPATH. On a Windows system, go to the Control Panel, Performance and Maintenance,
then to System, then to Advanced, and there will be a button that allows you to set environment vari-
ables; probably you will have to define a new one called CLASSPATH. Assuming that you have a file called
yadas.jar in the folder c:\\Java, a suggested value of the CLASSPATH variable is .;c:\\Java\\yadas.jar.
(If you already have a CLASSPATH variable defined, append the jar file and, if necessary, the current di-
rectory to the existing value of this variable.) This means that whenever you compile (using javac) or
run (using java) a Java class, the compiler or interpreter will look for class files in the current directory
(.) and then in the yadas.jar file. On a Macintosh, open a terminal window and execute the command
export CLASSPATH=’’.:/Users/tgraves/Java/yadas.jar’’, with the path changed to where you put the
yadas.jar file on your own system. This statement should be placed in your .profile file so that you
don’t have to execute it each time you open a new terminal window, and the jar file should be appended to
any existing value of the CLASSPATH variable. I don’t know how to do these things on Linux but it must be
similar to the Mac process.

It is likely that these instructions will be wrong or at least difficult to follow; if so, do not hesitate to get
help from Todd or Mike.

Next, convince yourself that Java is installed on your system and ready to be used. On a Mac, this is
already taken care of. On a Windows machine, I think you need to go to java.sun.com, then to “Java
SE” from the Popular Downloads menu on the right, then hit the Download button under JDK 6 Update
4 or whatever is current (you need the JDK, “Java Developer’s Kit”). Install that somewhere and locate
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the resulting javac.exe file (it’s probably somewhere like c:\\Program Files\\Java\\jdk1.6.0 04\\bin),
and ensure that the folder it’s stored in is in your PATH environment variable, using the same process as you
used to set your CLASSPATH.

Next, acquire the Examples.zip file, which was probably mailed to you as something called Examples.zzz
since our mail server strips off zip files; rename it and unzip it. Go to Examples/1 in a terminal, DOS, or
CYGWIN window, and execute the command javac OneWayAnova.java (you’re compiling the OneWayAnova
class). You should have generated a new file called OneWayAnova.class. Now run the command java
OneWayAnova 10000. This runs the MCMC algorithm defined in the OneWayAnova.java file for 10000 iter-
ations, and generates output files mu.out, theta.out, sigma.out, and delta.out, which you can read
into R and use to create summary statistics and plots. There’s not much point in doing that yet, since you
don’t even know what the model is. We’ll tell you that, but first let’s make sure YATRAN is also set up
and ready to run. Another good idea at this point is to unzip the yadas-src.zzz file so that you can look
at the YADAS source code when you want to. Someday you may want to compile this source code and use
the resulting compiled classes instead of the .jar file, but we won’t worry about that yet.

3 Setting Up YATRAN

The instructions are in the “YATRAN User Guide”, by Richard Klamann.

4 The First Example: One Way Anova

The first example model is a one-way analysis of variance. We have observed Gaussian data

yi, 0 ≤ i < ny.

These data are stratified into different groups, with the ith data point belonging to group gi, where gi ∈
{0, 1, . . . , ng − 1}. We allow each group to have a different mean, so that the data distribution is

yi ∼ N(µgi , σ
2) (0 ≤ i < ny).

We assume a hierarchical model for the group means:

µj ∼ N(θ, δ2) (0 ≤ j < ng).

The standard deviation parameters are given gamma prior distributions with known hyperparameters, i.e.

σ ∼ Γ(aσ, bσ) and δ ∼ Γ(aδ, bδ),

where we use the shape-scale parameterization so that E(σ) = aσbσ. We use an improper flat prior for θ
(“uniform on (−∞,∞)”). We wish to sample from the joint posterior distribution of (µ0, . . . , µng−1, θ, σ, δ).

5 The YATRAN Code for One Way Anova

This is discussed beautifully in the “YATRAN User Guide,” by Richard Klamann, on pages 2-5.

6 The YADAS Code for One Way Anova

In this section we go over the code in OneWayAnova.java, more or less line-by-line, trying to explain all the
concepts that arise. The format is that a piece of the code will be reproduced in typewriter font, and below
that piece of code we discuss it. This probably appears to be quite a complicated example. Unfortunately
YADAS is not currently set up to do easy things easily. The most promising method of creating a new
application is to start with an application already written by yourself or someone else and make changes to
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it so it can do what you want. Here we will try to tell you what every line in this file is doing and introduce
all the relevant concepts we can think of with this example.

First, what is this file? It’s the file that defines the class OneWayAnova, as can be seen from both the line 13

public class OneWayAnova {

and from the fact that the file is called OneWayAnova.java; both of these things are mandatory if you want
to create an executable called OneWayAnova.class. A class definition file defines how Java can create an
object belonging to that class, and furthermore what can be done with and to such an object after it has
been created. A class consists of data and methods. Methods are functions. Most methods can be called
using syntax like the following: suppose theta is an object of class MCMCParameter, which is one of the
most famous classes in YADAS. MCMCParameters have a method called update. If you want to “update
theta” i.e. call the update method of the object theta, the code that does this is theta.update(). (You
will probably never have to write this exact piece of code in any application.) Another method of the class
MCMCParameter is getValue, which allows you to query the current value of the kth element of theta by
theta.getValue(k), i.e. if θ is a vector of at least 9 elements, you can get the current value of θ8 with
theta.getValue(8), and θ0 by theta.getValue(0). Indexing in Java starts at 0 like in C, not at 1 like in
R! A special method that a class may or may not have is its main method, which starts at line 16 with

public static void main (String[] args) {

If a class has a main method, you can run it “as an application” from the command line e.g. with java
OneWayAnova.

/*
OneWayAnova.java: Example 1 on the YADAS tutorial.
Data y_{ij} ~ N ( \mu_{i}, \sigma^2 ),
\mu_{i} ~ N ( \theta, \delta^2 ),
\theta ~ flat prior on (-\infty, \infty),
\sigma ~ Gamma (a_\sigma, b_\sigma),
\delta ~ Gamma (a_\delta, b_\delta).

*/

Everything between /∗ and ∗/ is a comment, and everything on a line beginning // is also a comment.

import java.util.*;
import gov.lanl.yadas.*;

The first coding lines in a class file, if necessary, will be import statements that list the packages that the
class relies on: here, the java.util and gov.lanl.yadas packages. If these lines are omitted, the compiler
won’t know some of the things it needs to know to compile this class. For example, if the yadas package
isn’t imported, the compiler won’t know what to do with DataFrame, MCMCParameter, and loads of other
things. The java.util package is needed for ArrayList, if I remember correctly.

public class OneWayAnova {
public static void main (String[] args) {

We’ve mentioned these lines already; here we begin the definition of the OneWayAnova class and its main
method, which is what is executed when the class is run from the command line. public, static, and void
are keywords that describe properties of the main method; main methods are always defined to be public
static void. You probably don’t need to understand these keywords now, but here’s an introduction
if you’re curious: public defines from where this method can be called (other possibilities would include
only from this class, only from classes in this package, etc.); static is a somewhat advanced concept that
basically means that the compiler needs only one definition of this method, even if you have several different
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OneWayAnova objects running around; and void means that this method does not return anything, although
it may create side effects such as output files. Note that the main method is written so that in principle it
can accept an array of Strings as arguments: this is also required for a main method. (In Java, an array is
much like what is called a vector in R: an ordered list of things of the same type. The term array is used for
one-dimensional arrays as well as higher dimensional arrays. Arrays, when initialized, are defined to have a
certain length, and their lengths can not change later. If you need to keep objects together in lists whose
lengths may change, use a Java Collection, one example of which is ArrayList mentioned above.)

int B = 1000;
String direc = "";
String filename = "Ex1data.dat";
String filename2 = "Ex1mu.dat";
String shortfilename = "Ex1scalars.dat";

Here we are starting to declare and initialize some variables. Each of these lines does two things: allocate
storage space for a variable, and then give it an initial value. Instead of the first line, we could have written

int B;
B = 1000;

which divides up the two tasks into two statements. Note that a statement in Java must end with a semicolon.
What we are actually trying to accomplish with these five lines is defining default values of various things
that we can override if we want to with command line arguments. Here B is the number of MCMC iterations,
and the Strings define the locations of input files: we might want to run this code on many different data
sets.

try {
if (args.length > 0)

B = Integer.parseInt(args[0]);
if (args.length > 1)

direc = args[1];
if (args.length > 2)

filename = args[2];
if (args.length > 3)

filename2 = args[3];
if (args.length > 4)

shortfilename = args[4];
}
catch (NumberFormatException e) {

System.out.println("Poor argument list!" + e);
}

Here we’re completing the task of processing command-line arguments, so that we can use this code to run
more or less than 1000 iterations or analyze data in different files and directories than the defaults. Here we
learn a few things: how to write simple if statements, how to ascertain how many objects are in an array, how
to refer to an element in an array (again recall that array indices start with zero!), and how to send a message
to standard output. Advanced topics here are coercing a String into an integer using Integer.parseInt,
and exception handling using try and catch. Basically someone could have used a command line argument
for B which can’t be interpreted as an integer, and Java wants to allow the possibility of the programmer
handling this gracefully, so it “throws an exception” in the code encircled by try, which can then be handled
by the catch code. I haven’t yet figured out how to take good advantage of this in YADAS.

DataFrame d = new DataFrame (direc + filename);
DataFrame d2 = new DataFrame (direc + filename2);
ScalarFrame d0 = new ScalarFrame (direc + shortfilename);
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Here for the first time we are introduced to classes specific to YADAS, namely DataFrame and ScalarFrame,
whose purposes are to read mixed integer and real input data from files and then allow you to refer to the
data by the names of the variables, like data frames in S and R. Open data.dat from the Examples/1 folder
to see what files that can be read by DataFrame look like. The first line is the number of lines of data. The
second line is a list of variable names, separated by pipes (|). (You don’t have to use pipes, but it’s a little
harder to use some other delimiter.) The third line is a list of variable types: r for real, i for integer, and s
for String, although I very rarely use strings. There are a few surprises about what sorts of variables need
to be real rather than integer: for example, binomial sample sizes and numbers of successes are real. The
fourth lines and below contain the data, still separated by pipes. All data frames are rectangular (i.e. all
variables have the same length.) Now that you’ve read the data into a DataFrame and called that d, you
can access the data y using d.r("y"), and the integer group labels using d.i("group"). scalars.dat is
a sample YADAS scalar frame, which is like a data frame with all variables having length one. The initial
value of θ, stored in the data frame d0, can be accessed using d0.r("theta"). Note that you don’t have to
explicitly call out whether a scalar frame element is real or integer, and it can’t be a string.

Note that in Java, strings are concatenated using + as in direc + filename.

MCMCParameter mu, theta, sigma, delta;

MCMCParameter[] paramarray = new MCMCParameter[]
{

mu = new MCMCParameter (d2.r("mu"), d2.r("mumss"),
direc + "mu"),

theta = new MCMCParameter (d0.r("theta"), d0.r("thetamss"),
direc + "theta"),

sigma = new MCMCParameter (d0.r("sigma"), d0.r("sigmamss"),
direc + "sigma"),

delta = new MCMCParameter (d0.r("delta"), d0.r("deltamss"),
direc + "delta"),

};

This is where we announce what parameters we seek posterior samples of. We have previously learned how
to declare and initialize an object; here we declare and initialize an array. This array consists of objects
belonging to the YADAS class MCMCParameter. Note that we give names (mu, theta, etc.) to the elements
of this array and declare single MCMCParameters of these names in the first line in the above excerpt.

The initial definition of an MCMCParameter is an array of initial values, an array of step sizes, and a
filename to which to send output for that parameter. For example, the initial values and step sizes for mu
are in the DataFrame d, while the other parameters are of length one and initialized with values in the
ScalarFrame d0. Output is sent to the same directory as contained the input files, and the filenames are
mu.out, theta.out, etc.

MCMCBond databond, muprior, sigmaprior, deltaprior;

ArrayList bondlist = new ArrayList ();

bondlist.add ( databond = new BasicMCMCBond
( new MCMCParameter[] { mu, sigma },
new ArgumentMaker[]

{ new ConstantArgument (d.r("y")),
new GroupArgument (0, d.i("group")),
new GroupArgument (1, d.i(0)) },

new Gaussian () ));

OK, the hard stuff is beginning. This is the start of the definition of the model. First we declare four objects
that implement the YADAS interface MCMCBond, then we declare an ArrayList to hold them. ArrayList is a
Java class that holds an arbitrary number of objects of arbitrary type(s) in a specified order; this ArrayList
is not actually used for any critical purpose. You add elements to an array list using the method add().
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At this point it is not important to understand exactly what MCMCBond means in the design of YADAS.
If you want to, probably the paper “Design Ideas for Markov Chain Monte Carlo Software,” published in
JCGS and available on my papers website

http://www.ccs.lanl.gov/ccs6/staff/TGraves/pdfs.html

is the best place to look. For the moment, a term in the unnormalized posterior distribution is defined
using an MCMCBond (the unnormalized posterior is the product of the bonds). The word “bond” comes from
imagining a chemistry interpretation of a graphical depiction of the model in which parameters are atoms,
and more than two parameters can be bonded together with a single bond. What’s a “term”? If you have
several normally distributed data points, most likely all of their distributions will be defined together using
a single MCMCBond.

It is important that you understand why the code means

yi ∼ N(µgi
, σ2) for i = 0, 1, . . . , ny. (1)

You should eventually be able to mimic this sort of code to define your own models. What have we done
here? We have given the bond a name, “databond”, which is not strictly necessary; it can be used for
debugging. Then we have used the BasicMCMCBond syntax to define this part of the model. BasicMCMCBonds
think of pieces of statistical models in the following way. We begin with some parameters:

new MCMCParameter[] { mu, sigma }

is the syntax for defining a new array of objects belonging to the MCMCParameter class, and containing the
two existing MCMCParameters mu and sigma. Now we want to process these parameters together with some
data and constants to generate vectors that can be run through standard probability density functions. In
this example, we have to process µ and σ so that we can use the standard Gaussian function, which knows
how to calculate

Gaussian(d, m, s) = − log(s)− 1
2

log(2π)− 1
2s2

(d−m)2, (2)

the log of the standard univariate Gaussian density function as a function of its data d, its mean m and
its standard deviation s. To use this in a specific problem, we need to build an array of d’s, an array
of m’s, and an array of s’s, and we do this using YADAS objects called ArgumentMakers. First, we use
a ConstantArgument to indicate that the array of data y in the DataFrame d are to play the role of the
Gaussian data; a ConstantArgument is used when the contents of an argument are not going to change at
any point of the algorithm. Then we use GroupArguments to define the m and s arrays: first, the line

new GroupArgument (0, d.i("group"))

indicates that the parameter mu will be used to build the mean. It uses a 0 to point to the zeroth (i.e. first)
element of the array of parameters defined earlier, and this zeroth element is the parameter mu. Next it
expands this parameter so that it has the appropriate length (i.e. the same length as the data vector), and
so that the correct µj correspond to the data in the jth group. It does this using the array of integers in the
data.dat input file and stored in the DataFrame d under the name “group”. This works in the same way
as it would in R if you had a vector mu = c(mu0, mu1, mu2) and a vector g = c(rep(0,10), rep(1,10),
rep(2,10)) and let m = mu[g+1]. (Once again, the +1 is necessary because array indices start with 1 in
one language and 0 in the other.) The definition of the array of standard deviations is similar: the 1 points
to sigma and d.i(0) is an array of all zeros of the length of the variables in the DataFrame d (i.e. one zero
for each data point).

If you hate parameterizing the Gaussian with its standard deviation, Hamada has written a GaussianVar,
for example, and it’s no trouble to write a GaussianPrecision for that matter.

bondlist.add ( muprior = new BasicMCMCBond
( new MCMCParameter[] { mu, theta, delta },
new ArgumentMaker[]

{ new IdentityArgument (0),
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new GroupArgument (1, d2.i(0)),
new GroupArgument (2, d2.i(0)) },

new Gaussian () ));

bondlist.add ( sigmaprior = new BasicMCMCBond
( new MCMCParameter[] { sigma },
new ArgumentMaker[]

{ new IdentityArgument (0),
new ConstantArgument (d0.r("asigma")),
new ConstantArgument (d0.r("bsigma")) },

new Gamma () ));

bondlist.add ( deltaprior = new BasicMCMCBond
( new MCMCParameter[] { delta },
new ArgumentMaker[]

{ new IdentityArgument (0),
new ConstantArgument (d0.r("adelta")),
new ConstantArgument (d0.r("bdelta")) },

new Gamma () ));

Here we define the remainder of the unnormalized posterior distribution. First, we define the prior distribu-
tion for the µs, which introduces the IdentityArgument: this makes a copy of one of the parameters without
expanding or otherwise altering it. All the µs have the same mean and standard deviation: the scalar pa-
rameters theta and delta, respectively, so that these parameters have to be expanded to be the length of
the data frame d2. sigma and delta are both given Gamma priors (in YADAS, the gamma distribution is
parameterized by its shape and scale parameters). The various prior parameters are not estimated and are
defined in the ScalarFrame. Note that no prior distribution is specified for theta; that means it is uniform
on the entire real line (its prior is proportional to 1 everywhere).

MCMCUpdate[] updatearray = new MCMCUpdate[]
{

mu, theta, sigma, delta,
};

This is the definition of the YADAS algorithm, in its simplest form. We build an array of update steps, and
one iteration in the MCMC algorithm consists of looping through the elements of this array. Here we have
defined an algorithm simply by listing all the parameters we are trying to estimate: this means that each of
the elements of each of the parameters will be updated using variable-at-a-time Metropolis with a Gaussian
proposal.

Since this part of the code is pretty simple to write, this is a good place to tell you about the “interface”
in Java. An interface is a set of abstract descriptions of methods. Then a class “implements” the interface
if it contains definitions for all the methods in the interface. This pays off in code like the above, where we
make an array of objects that can in principle be quite different except that they all implement the same
interface (in this case, MCMCUpdate), and then we can process them in a loop in ways permitted by the
interface. Later in this YADAS code, we loop over the objects in this updatearray and call the update
method of each, and one cycle through this loop is one iteration in the MCMC algorithm. In the example in
this YADAS application, all the updates are parameters, and parameters have update methods that perform
variable-at-a-time random walk Metropolis with Gaussian proposals. Different YADAS algorithms can be
built by putting different things such as MultipleParameterUpdates in this array.

There are people better than me at explaining object-oriented concepts. I like the treatment in Bruce
Eckel’s Thinking in Java, a considerable amount of which is available online at http://mindview.net/Books/TIJ4.
Go there, click on “Sample: Front Matter + First 7 Chapters + Index”, and read pages 15-28 if you like. Pre-
sumably http://java.sun.com/docs/books/tutorial/ has some useful information as well, but I haven’t
read it.

One easy and useful way to modify the standard YADAS algorithm is to add step size tuning. This runs
an experiment with different step sizes, then runs a logistic regression on number of accepted moves as a
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function of log(step size) and chooses step sizes that should yield desired acceptance rates of about 1/e; see
my paper “Automatic Step Size Selection in Random Walk Metropolis Algorithms” (although this paper
may have sections that end in midsentence). If we wanted to use this step size tuner for all the parameters
in the one-way anova example, we would change the definition of updatearray to:

MCMCUpdate[] updatearray = new MCMCUpdate[]
{

new UpdateTuner (mu),
new UpdateTuner (theta),
new UpdateTuner (sigma),
new UpdateTuner (delta),

};

(That’s the end of the new definition of updatearray. Now we move on to another piece of the code.)

for (int b = 0; b < B; b++) {
if ((b/1000.0 - (int)(b/1000))== 0) System.out.println(b);
for (int i = 0; i < updatearray.length; i++) {

updatearray[i].update ();
}
for (int i = 0; i < paramarray.length; i++) {

paramarray[i].output ();
}

}

At this point we’re wrapping up and discussing code that you probably won’t have to change. This is the
code that runs the algorithm and generates output. B is the number of MCMC iterations; after every 1000
we send a simple progress report to standard output. Every iteration consists of a call to the update method
for each update in the algorithm, and at the end of an iteration we send the current value of each parameter
to a file via the output method.

String acc;
for (int iii = 0; iii < updatearray.length; iii++) {

acc = updatearray[iii].accepted();
System.out.println("Update " + iii + ": " + acc);

}
for (int i = 0; i < paramarray.length; i++) {

paramarray[i].finish();
}

In the last piece of code we send information about the acceptance rates of the various update steps to
standard output, and then clean up by ensuring that all MCMC samples are actually written to the file
rather than sitting in a buffer. That’s it!

Exercises

When modifying a class, give the file and the class a new name (recall that this means changing the public
class OneWayAnova line to, for example, public class YADASTutorialExercise1 and saving the file as
YADASTutorialExercise1.java) and recompile.

1. If you haven’t already, run the OneWayAnova application, read the output into R, and generate sensible
summary statistics and plots.

2. Modify the prior distribution for sigma so that it is Uniform on (0, 100). Rerun and compare results.

8



3. Modify the prior distribution of delta so that given sigma, delta has a Gamma distribution with
mean σ and shape parameter alpha, where alpha is fixed and defined in the scalars.dat file. Hint:
YADAS contains a class called GammaMeanAlpha.

4. Modify the algorithm so that sigma and delta are updated using Gaussian proposals on the log scale.
Do this by changing their definitions from new MCMCParameter to new MultiplicativeMCMCParameter.
Turn on the automatic step size tuner for these two parameters.

5. Change the output so that only every 10th iteration is sent to a file.

6. Experiment with other examples in the Examples.zzz file and discussed on the YADAS web site.

7 Example 2: N-component series system

Your first impression of this example may be that it is a simple problem made hard, as indeed it and many
other things in YADAS are. However, this complexity serves to enable many generalizations of this simple
problem. Introducing this example serves a couple of purposes: first, it introduces the reliability package of
YADAS, and second, it opens discussion of some features we’ve used in our reliability models that we need
to discuss further.

We have an N−component series system. We will use the subscripts 1 through N to refer to these
components, and the subscript 0 to refer to the full system. Data consist of component tests with (x1, . . . , xN )
successes in (n1, . . . , nN ) trials, and system tests with x0 successes in n0 trials. The unknown parameters are
(p1, . . . , pN ) (the success probabilities for the components), and we are particularly interested in the system
success probability p0 =

∏N
k=1 pk.

We assume Beta prior distributions for p1 through pN . There are several different cases for the parameters
of these prior distributions. We can work with two different parameterizations of the Beta distribution:
the standard (a, b) parameterization where the density f(p|a, b) ∝ pa−1(1 − p)b−1, and the mean-precision
parameterization where f(p|p̃, ν) ∝ pνp̃−1(1 − p)ν(1−p̃)−1, which satisfies E(p|p̃, ν) = p̃ and Var(p|p̃, ν) =
p̃(1−p̃)

ν+1 .

• Of course, the prior parameters can be fixed, either at some value such as a = b = 1(p̃ = 0.5, ν = 2),
a = b = 0.5(p̃ = 0.5, ν = 1), or something more informative.

• If multiple components rely on the same prior parameters, we can allow the prior parameters to be
random and estimate them. For example, we have used a hierarchical model where the components all
have the same prior mean p̃, which is random:

pi ∼ Beta(νp̃, ν(1− p̃)) (i = 1, 2, . . . , n), with p̃ ∼ Beta(a, b). (3)

If I remember correctly, the hierarchical model was proposed by Val Johnson to ensure that if we have
only system-level data, the estimate of system reliability does not depend strongly on the number of
components in the system. It opens us up to the criticism that we are making the unrealistic assumption
that a priori, the components are equally reliable. I’m not terribly bothered by this: the belief that
the component reliabilities are different may come in part from the tests themselves and thus may not
belong in the prior. In a generic system one expects that relatively unreliable components will undergo
additional engineering, and this can lead one to expect equal component reliabilities in the absence of
other information. Finally, I’ll wager a burrito that one doesn’t need to assume exactly (3) to get the
benefits of the hierarchical model. For example, one can assume

E(pi|α, βi) = logit−1(α + βi), with α ∼ N(0, σ2
α) and βi known. (4)

This preserves the hierarchical model property where we have a parameter α in common across all
components, while assuming that a priori, some components are more reliable than others. If our
customers are unwilling to provide information that we can convert to the βi, then we can assume (3)
with impunity.
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We also allow expert opinion about the value of p0 to be incorporated into the analysis. Conversations
with an expert on the system can sometimes in principle be converted to an equivalent number of successes
and binomial trials at the system level. This acts like a binomial likelihood for the system reliability p0 = p1p2,
and can consequently be read as a beta density term in the posterior.

7.1 Digression

I have come to think that it is quite wrong to call this a “system-level prior.” It may have come from the
expert’s genuine prior distribution for p0, but it is not our prior for p0. Our prior for p0 can only be found by
considering our joint prior for (p1, p2) and evaluating the induced distribution of p1p2. Now, it is legitimate
to combine our prior for (p1, p2) with all of our pieces of expert opinion and refer to this as some sort of
prior. My opinion, which as far as I know no one agrees with, is that the process of interviewing experts to
elicit their opinions can only be interpreted as an experiment generating data with likelihood function equal
to the term that as a result you include in the posterior density. For example, if an expert tells us that

p0 ∼ Beta(a + 1, b + 1),

we must interpret this as an experiment that generated data (a, b) with likelihood function

C(p0)Γ(a + b + 2)
Γ(a + 1)Γ(b + 1)

pa
0(1− p0)b, (5)

where C(p0) is the constant that leads this expression to integrate to one when we integrate out a and b, if
it is even integrable. (In practice, we use C(p0) = 1 instead.) I admit that this opinion of mine is completely
ignorant of existing work in expert elicitation, and this should offend people, but one can’t read everything.
Also, this interpretation of expert opinion implies that classical statisticians can use expert opinion almost as
effectively as Bayesians, and that will make no one happy. Also, this is very far afield from learning YADAS,
but the handling of expert opinion in system reliability is an important issue that we need to discuss in some
forum.

7.2 Return from digression

When expert opinion on the system reliability is expressed in terms of a Beta(a, b) distribution, we adopt
the convention of adding one to the a and b parameters and have referred to this as “treating the expert
opinion as data” because of the interpretation of a Beta prior distribution being expressed as an equivalent
sample size and number of successes, and the difference between the Beta prior and the binomial likelihood
being −1’s appearing in the Beta exponents. One reason is that if we don’t, we can’t guarantee a proper
posterior distribution for (p1, . . . , pN ).

Finally, we can put a prior distribution on ν parameters associated with expert opinion when the experts
have only given us point estimates. We “always” use ν ∼ Γ(5, 1). According to my memory, I pulled this
out of thin air one day with no particular justification. The motivation for allowing ν to be random at all
is that experts can be wrong, and this allows the expert opinion to be be downweighted when it disagrees
with the data.

7.3 On to the YADAS, finally.

The discussion of the models was probably confusing. Here is a simplified description of the models we can
fit with the SystemReliabilityExample class in the reliability package.

• We have a series system with N components. Their reliabilities are p1, . . . , pN , and the system reliability
is p0 =

∏N
i=1 pi.

• We have binomial data (xi, ni) for i = 0, 1, . . . , N , with subscript zero referring to the system.

• The prior distribution for the component reliabilities satisfies pi ∼ Beta(νp̃, ν(1− p̃)) (i = 1, . . . , N).
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• The hyperprior distribution for p̃ satisfies p̃ ∼ Beta(a, b).

• We have expert opinion at the subsystem level which we incorporate with a density term that looks
like

pν0p̃0
0 (1− p0)ν0(1−p̃0).

ν0 and p̃0 are fixed. ν0 = 0 is an option, in which case we have no such expert opinion.

• ν is fixed (at 5).

To run this example, you need to obtain the yadasandreliability.jar file and put it in your CLASS-
PATH as you learned to do in the previous lesson. In fact, I would rename it yadas.jar and just use it
instead of the previous yadas.jar. Sorry about that: some of the code in the new jar file depends on code
in another jar file written elsewhere, and I didn’t want to require you to get that. But for the moment you
can use this jar file without getting the other code.

The new jar file contains the standard YADAS distribution and also the reliability package.

To run this example, obtain the file tutorialexamples.zip and extract the subfolder twocomponentsystem
with its four input files to your local system, and go to that directory. Execute the command

java gov.lanl.yadas.reliability.SystemReliabilityExample 10000 ./

Here you are executing a class that is included with the YADAS and reliability package distribution, so you
don’t need a compilation step. Note the technique for referring to a class in a specific package: it is like a
path, with periods in separating levels in the folder hierarchy. The full names of packages are like URLs in
reverse: the yadas website is yadas.lanl.gov, so the yadas package’s full name is gov.lanl.yadas. 10000
is the number of MCMC iterations and the last argument tells YADAS to use the current directory to find
the input files and send the output.

Now, as with example 1, we will walk through the SystemReliabilityExample.java file line-by-line and
discuss new concepts. Recall that the source code is available inside the file yadasandreliability-src.zip
(or .zzz).

package gov.lanl.yadas.reliability;
import gov.lanl.yadas.*;
import java.util.*;

There is an additional line before the import statements declaring that SystemReliabilityExample is part
of the reliability package of YADAS.

public class SystemReliabilityExample {

public static void main (String[] args) {

int B = 1000;
String direc = "/Users/tgraves/projects/yadas/reliability/exampledata/";
String filename = "components.dat";
String shortfilename = "leaves.dat";
String priorfilename = "ptilde.dat";
String nufilename = "nu.dat";

try {
if (args.length > 0)

B = Integer.parseInt(args[0]);
if (args.length > 1)

direc = args[1];
if (args.length > 2)

filename = args[2];
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if (args.length > 3)
shortfilename = args[3];

if (args.length > 4)
priorfilename = args[4];

if (args.length > 5)
nufilename = args[5];

}
catch (NumberFormatException e) {

System.out.println("Poor argument list!" + e);
}

The start of the code, as in example 1, declares the name of the class, defines default values for command-line
inputs, and processes command line inputs.

DataFrame d = new DataFrame (direc + filename);
DataFrame leafd = new DataFrame (direc + shortfilename);
DataFrame priord = new DataFrame (direc + priorfilename);
DataFrame nud = new DataFrame(direc + nufilename);

This example requires four data files. We will discuss these in more detail later, but we note here that these
same data files, with minimal changes, can be used to analyze an n-component series system for several
values of N . The first line of components.dat should be the integer N + 1, and the first line of leaves.dat
should be N . As I sent them to you, N = 2, but you can do analyses for other N by changing these two
lines.

• components.dat has a horrible name; nodes.dat would be better. (At one point I was using the
name “components” to refer to any node in the graph for a system, including genuine components,
subsystems, and the full system. It seemed like a good idea at the time. Software has a way of
immortalizing your bad decisions.) This file defines the system structure, stores the data at all levels,
and defines the mapping between nodes and the parameters p, p̃, and ν. It has one row of data for
each node in the graph: for the N−component series system, that’s N + 1.

• leaves.dat contains one row for each leaf node in the graph; one for each thing we would typically
call a “component.” It gives initial values for the pi and step sizes.

• ptilde.dat features one row for each p̃, and in our case this is two, one for the system and one for the
components. It includes only (initial) values for these parameters and step sizes, which can be zero.

• nu.dat contains one row for each ν, which is also one for the system and one for the components.
It contains (initial) values, step sizes, and parameters for their gamma distributions. In our example
both ν’s are fixed (have zero step sizes), and ν0 = 0. It is important that if one of the νs is zero,
its prior parameters are such that the gamma density is positive at zero (for example, a = b = 1).
Otherwise, the parameters will never move from their initial values. (The reason, if you care, is that
the unnormalized posterior is always −∞, so the acceptance probability for all moves is NaN, so every
move is rejected.)

MCMCParameter p, ptilde, nu, notleaf;

MCMCParameter[] paramarray = new MCMCParameter[]
{

p = new LogitMCMCParameter
(leafd.r("p"), leafd.r("pmss"), direc + "p"),

ptilde = new LogitMCMCParameter
(priord.r("ptilde"), priord.r("ptmss"), direc + "ptilde"),

nu = new MultiplicativeMCMCParameter
(nud.r("nu"), nud.r("numss"), direc + "nu"),

notleaf = new MCMCParameter
(d.r("notleaf"), d.r(0), direc + "notleaf"),

};
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The three parameters you expected are all defined. Note that since p and p̃ are probabilities, we have
defined them to be LogitMCMCParameters so that Metropolis-Hastings proposals are Gaussian random walk
proposals on the logit scale. Similarly, ν is defined to be a MultiplicativeMCMCParameter so that it is
updated on the log scale. The surprise is the parameter notleaf. This thing contains indicators of whether
an element of p corresponds to a leaf in the graph. (Ideally YADAS would figure this out on its own, but it
doesn’t.) We are not seeking posterior samples of this, but we need to define it as a parameter because of a
quirk of the YADAS class FunctionalArgument, which will be defined below.

MCMCBond binomialdata, p_prior, nu_prior;

ArrayList bondlist = new ArrayList ();

BasicSystemProbArgument bspa = new BasicSystemProbArgument
( new IdentityComponentProbs (0, d.length() ),
new BasicSystemConverter
(d.i("parents"), d.i("gate"), d.i("pexpand")));

Usually not much goes on at this stage except declaring some names for bonds and declaring bondlist. Here
we are defining a special object, a BasicSystemProbArgument, which is the key to many YADAS system
reliability analyses. We define it before the definitions of the bonds because it will be used in two different
bonds. Its definition consists of two parts: a way to calculate the reliabilities of leaves (components) as a
function of unknown parameters, then a way to calculate the reliability of subsystems and the full system
as a function of leaf reliabilities.

In this example, an object called an IdentityComponentProbs is used to compute the leaf reliabilities: in
this case, the unknown parameters are exactly the leaf reliabilities, so the object needs only to know how to
find the appropriate parameter (parameter 0) and how many nodes are in the system. In more complicated
examples, unknown parameters may need to be transformed into reliabilities (in the case of covariates, for
example), and in these cases we use some other object that implements the ComponentProbBuilder interface
like IdentityComponentProbs does.

This example also uses a simple class to calculate the upper-level node reliabilities, a ComponentToDataConverter.
This class needs to be told the graph structure of the system so that it can convert component reliabilities to
subsystem and system reliabilities. It accepts this information in the form of three (sometimes four) arrays
of integers. The first array describes how to draw the graph: if the ith element of this array is equal to j,
then component i is part of subsystem j, and if node i represents the whole system, then the ith element
is set equal to −1. In our example, the zeroth element is −1 and the remaining elements are equal to 0.
The next array describes the series or parallel structure: if this array’s ith element is positive, then the
ith node represents a series (sub)system, while nonpositive indicates a parallel (sub)system; if node i is a
component, the ith element is ignored. The third array is used for mapping the nodes to the unknown
parameters: if node i is not a leaf, it should get a negative value here, while the leaves should be numbered
from 0 to one less than their number. Finally, a fourth array can be specified here: it defines the order in
which node reliabilities should be evaluated, starting with components and working up. (In theory YADAS
could do this itself.) By default (i.e. if this fourth array is not specified), the algorithm starts with pN and
works backward through p0. If the ith element of this array is equal to j, then node j is the ith reliability
to be evaluated (confusingly, the ith element in general has nothing to do with the ith node). With this
information, YADAS can compute the reliabilities of all nodes in the graph, regardless of the functional form
of the leaf reliabilities.

bondlist.add ( binomialdata = new BasicMCMCBond
( new MCMCParameter[] { p },
new ArgumentMaker[]

{ new ConstantArgument (d.r("x")),
new ConstantArgument (d.r("n")),
bspa },

new Binomial () ));
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We have binomial data throughout the graph, specified in the x and n columns of the input file components.dat.
This is our first introduction to Binomial, but it is probably self-explanatory. The interesting thing here is
that the special argument BasicSystemProbArgument has been used to calculate the reliabilities of all the
nodes in the graph.

bondlist.add ( p_prior = new BasicMCMCBond
( new MCMCParameter[] { p, ptilde, nu, notleaf },
new ArgumentMaker[]

{ bspa,
new FunctionalArgument

(d.length(), 4, new int[] {1, 2},
new int[][] { d.i("priorexpand"),

d.i("nuexpand") },
new Function ()

{ public double f(double[] args)
{ return args[1] * args[2] + args[3];

}}),
new FunctionalArgument

(d.length(), 4, new int[] {1, 2},
new int[][] { d.i("priorexpand"),

d.i("nuexpand") },
new Function ()

{ public double f(double[] args)
{ return (1-args[1])* args[2] + args[3];

}}),
},

new Beta() ));

This is a piece of code which is fairly likely to cure you of wanting to learn YADAS. This term specifies prior
distributions for the leaf reliabilities and expert opinion for the other nodes, in the form of

pi ∼ Beta(νg1(i)p̃g2(i) + Ii, νg1(i)(1− p̃g2(i)) + Ii), (6)

for all nodes i in the graph, where g1 and g2 are grouping functions and Ii is 0 if node i is a leaf, and 1
otherwise. The FunctionalArgument is actually a very useful device for adding versatility to YADAS, but
its interface is not intuitive (it will not be reproduced here as it is given on the YADAS website). Most of
the elements in the definition of a functional argument are for the purpose of using the unknown parameters
to build a rectangular array, to whose rows can be applied an arbitrary function. The columns priorexpand
and nuexpand in components.dat define g2 and g1 in (6) in the same way as the group means were assigned
to data points in the previous example. Here is some documentation of what these FunctionalArguments
do, organized by the arguments inside new FunctionalArgument:

• d.length() is the number of rows in the matrix we are building. Here, this number is N + 1, the
number of rows of data in components.dat. We are trying to build a function that will be applied
once for each node in the graph.

• 4 is the number of parameters (and hence the number of columns in the matrix we are building).
Actually we are only going to be using p̃, ν, and notleaf here, but p is also part of this BasicMCMCBond,
so we need to pretend to use it as well.

• new int[] {1, 2} indicates which of the parameters need to have subscripting (grouping) variables
applied to them. We need to map p̃ and ν to the nodes in the graph, and that is the purpose of the
columns priorexpand and nuexpand in components.dat.

• new int[][] {d.i(‘‘priorexpand’’), d.i(‘‘nuexpand’’)}

is a two-dimensional array in which we list the subscripting variables that we announced our intention
of using in the last item in this list. There should be one array for each integer in the previous item.
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• The last part of the definition of a FunctionalArgument is the Function itself. The first function, in
somewhat more friendly notation, is f(p, p̃, ν, I) = p̃ν + I, and the second function is f(p, p̃, ν, I) =
(1 − p̃)ν + I. You should recognize these as the parameters of the Beta distributions in the prior for
the leaf reliabilities and the system-level expert opinion. It probably isn’t useful to try to get you to
understand all the elements of the syntax of this function now, but perhaps it is at least realistic that
you could attempt another function in the place of one of these.

Functional arguments can only operate on parameters (not on an array of constants, for example), explaining
why we had to define notleaf to be an MCMCParameter earlier.

Another important note is that since the BasicSystemProbArgument was used in two different bonds,
and part of its definition was that its IdentityComponentProbs was pointing at the 0th parameter, it was
necessary that the parameter p occupy the 0th position in the array of parameters in both the binomialdata
bond and the p prior bond.

bondlist.add (pt_prior = new BasicMCMCBond
( new MCMCParameter[] { ptilde },
new ArgumentMaker[]

{ new IdentityArgument (0),
new ConstantArgument (priord.r("apt")),
new ConstantArgument (priord.r("bpt")) },

new Beta () ));
bondlist.add (nu_prior = new BasicMCMCBond

( new MCMCParameter[] { nu },
new ArgumentMaker[]

{ new IdentityArgument (0),
new ConstantArgument (nud.r("anu")),
new ConstantArgument (nud.r("bnu")) },

new Gamma () ));

However many p̃s and νs there are, they are given beta and gamma prior distributions with prior parameters
given in the two corresponding input files.

p.nf.setMaximumFractionDigits(6);
ptilde.nf.setMaximumFractionDigits(6);

The default in YADAS is to output only three decimal places of an MCMC iteration of an unknown param-
eters. This may not be adequate for your example. Since p and p̃ are probabilities that may be close to one,
we increase the number of outputted digits to six.

MCMCUpdate[] updatearray = new MCMCUpdate[]
{

p, ptilde, nu,
};

The MCMC algorithm consists of (logit-scale) updates of p and of those elements of p̃ that are not fixed,
and (log-scale) updates of those elements of ν that are not fixed. In the example data files, all the νs are
fixed (i.e. have step sizes of zero), so that update step does nothing. As always, these update steps can be
made tunable by converting, for example, p to new UpdateTuner(p).

The remainder of the code is identical to that from the first example.

Here are generalizations to this analysis that you can perform with SystemReliabilityExample by
altering only the input files.

• The system can have many levels, and can be built with system and parallel pieces.

• Data can be present at subsystem levels as well.
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• Different prior distributions can be used for the pi: they can be informative beta distributions, or the
components can be divided up into more groups, each of which has its own p̃ and possibly its own ν,
or all groups can share the same ν.

• p̃ can be fixed. If there is more than one p̃, any subset of them can be fixed.

• Expert opinion can be included at subsystem levels. The parameters of these expert opinions terms
can be shared across nodes and potentially estimated with prior distributions.

• ν (or several ν’s) can potentially be given prior distributions and estimated.
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